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Abstract

Research supported by NASA Langley Research Center includes many

applications of aerospace design optimization and is conducted by teams of applied

mathematicians and aerospace engineers.  This paper investigates the benefits from

this combined expertise in formulating and solving integer and combinatorial

optimization problems.  Applications range from the design of large space antennas

to interior noise control.  A typical problem, for example, seeks the optimal locations

for vibration-damping devices on an orbiting platform and is expressed as a

mixed/integer linear programming problem with more than 1500 design variables.

Introduction

The purpose of this effort is to investigate the interchange of ideas between

aerospace engineers and applied mathematicians in formulating and solving design

optimization problems.  This research also describes and provides examples of

integer and combinatorial optimization applications that have been studied at NASA

Langley Research Center.

The use of optimization in aerospace design has a long history (refs. 1−2).

Several recent surveys of this research are available to the interested reader (refs. 3−

6).  These survey papers concentrate on the use of optimization to enhance traditional

disciplinary design techniques ( ref. 4) and on the use of optimization to enable

innovative multidisciplinary methodologies (ref. 6).  The survey papers focus on the

aerospace design process or on the need for and development of new optimization

methods.

The present research pursues a different objective.  First, it focuses on a narrow

class of optimization problems with truly discrete-valued or integer design variables.

This class of problems is under represented in the references mentioned above.

Second, this research emphasizes the formulation of aerospace optimization

problems rather than the analysis of solutions to these problems.  The intent is to



show that formulating aerospace optimization problems is a complex process which

requires the expertise of engineers and mathematicians.

Three aerospace integer or combinatorial optimization problems are cited in

this paper.  The first involves the selection of the best assembly sequence for a large

space antenna; the second seeks optimal locations for vibration-damping devices on

an orbiting space platform; and the third involves determination of the number and

position of active structural acoustic control actuators.  For each case, the

mathematical problem statement is given, a solution method is suggested, and typical

results are examined.  Moreover, the contributions of mathematicians and engineers

are acknowledged; and obstacles encountered in the solution process are reviewed.

Optimization Methods

Several optimization methods, including simulated annealing, tabu search and

branch and bound, for solving combinatorial optimization problems are mentioned

herein.  These are heuristic (i.e., rule-based) methods and are not guaranteed to

converge to a global minimum.  A brief characterization of each method is given in

this section.  For a detailed description, the interested reader is referred to the

appropriate references.

Metaheuristics such as simulated annealing and tabu search provide a shell

within which a variety of other heuristics may be implemented.  The definitions and

notations that follow are taken from references 7−9.

Let Σ denote the set of all feasible states (i.e., the set of feasible solutions to the

minimization problem generated from all possible combinations of the design

variables) and let S denote an element of Σ.  To differentiate between states we define

a criterion function c and refer to c(S) as the cost  of state S.  To move from one state to

another we define a move set ∆ and a move δ ∈∆ .  The outcome of applying all legal

moves δ ∈∆  to the current state S defines the set of states reachable from S;  this set

is typically called the neighborhood of S.  The value of a move is the difference

between the cost of the new state and the cost of S (i.e., c[δ(S)] - c(S)).



Each metaheuristic begins with an initial state S0, chosen either at random or

constructed algorithmically.  Then the metaheuristic generates a sequence of moves

{δ0, δ1, ..., δn} which determines a sequence of states through which the search

proceeds.

The mechanism by which a move is selected is one of the crucial differences

between simulated annealing and tabu search.  To appreciate the difference consider

an improvement scheme that at state St selects the greatest available one-move

improvement.



That is, the next move δt is chosen based on minimum cost:
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Equation (1) is called a greedy local improvement scheme and a metaheuristic based

on equation (1) is called a greedy search algorithm .  The greedy search terminates

when no improving move is found.  The final state of a greedy search is a local

minimum (with respect to a particular move structure) and is, generally, not the

global minimum.  Both simulated annealing and tabu search are attempts to

circumvent this difficulty.  In simulated annealing nonimproving moves are initially

accepted with a high probability; the probability is gradually decreased.  Simple

versions of tabu search attempt to avoid entrapment in local minima by maintaining

a list of previously selected moves and deleting them from the move set ∆ for a state

S to avoid a return to a previously observed state.  More sophisticated features of

tabu search involve use of the search history to diversify or intensify the search.

The branch and bound algorithm with linear programming (LP) relaxations

(e.g., see ref. 10) is an alternative to the above heuristic algorithms.  This technique is

a good choice for combinatorial optimization problems that involve binary design

variables and linear criterion functions and linear constraints.  The method solves a

sequence of LP problems that establish upper and lower bounds on the solution to

the integer linear programming (ILP) problem.  These bounds are used to "prune"

branches from the binary tree which describes the state space Σ.  The method

terminates after a fixed number of LP problems have been considered or when the

difference between the newest upper and lower bounds is small compared with the

modeling or measurement uncertainty.

Three optimization problems are cited in this paper.  The first problem uses

simulated annealing for selection of the best antenna assembly sequence.  The second

seeks optimal vibration damper locations using branch and bound and the third

involves determination of the number and position of active structural acoustic

control actuators using tabu search.



Antenna Assembly Sequence Problem

Assume that an antenna (fig. 1(a)) is to be designed and erected in space using

a large number n of truss elements.  For research purposes, the antenna structure is

designed as a tetrahedral truss (fig. 1(b)) with a flat top surface (i.e., all nodes in the

top surface of the finite-element model are coplanar).  The lengths of the truss

elements must be identical to minimize surface distortion and to avoid the buildup of

internal forces during the assembly process.  However, because of unavoidable

manufacturing limitations, the lengths are never precisely identical.  Each truss

element j has a small but measurable error e j .  One way to minimize the impact of

these errors is to assemble the antenna in such a way that the errors offset one

another.

A combinatorial optimization problem that determines the best arrangement

of the truss elements is developed here.  First, the objective is stated as the

minimization of the squared L2 norm of the surface distortion:

d e U DUe e HeT T T2 = = (2)

where e is the vector of measured errors; U is the influence matrix such that uij  gives

the influence of a unit error in member j on the surface distortion at node i; and D is a

positive semidefinite weighting matrix that denotes the relative importance of each

node i at which distortion is measured.  The matrix U can be calculated by any

structural analysis software package, and the matrix D is often the identity matrix.

With these definitions, the antenna distortion problem is stated as
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over all permutations of the error vector e.  Clearly equation (3) is a quadratic

assignment problem; however this equation is not the typical version studied in the

operations research literature.

For the antenna assembly sequence problem, engineering insight led directly

to a mathematical solution process.  The authors of reference 11 observe that the cost

of truss elements increases dramatically when unusual precision in length is

demanded.  They suggest that truss elements with standard precision would be



adequate if assembled in the correct order.  Because construction of the antenna in

space requires careful planning of the assembly sequence, the mathematical

assignment of truss elements to specific antenna locations does not increase the

complexity of the process.

In reference 11 the following conceptual solution is proposed.  The antenna is

assembled with a random assignment of elements.  Pairs of elements are selected at

random and interchanged.  If the surface distortion degrades then the interchange is

reversed, otherwise it remains.  This process continues until no further improvement

is realized.  The effect of interchanges can be predicted using equation (2) so that no

hardware changes must be made until the best arrangement has been identified (ref.

11).

The pairwise interchange heuristic that is suggested in reference 11 is similar

to the greedy heuristic discussed in the introduction.  This interchange heuristic is

inferior to the simulated annealing or tabu search algorithms developed in references

12 and 13.  For example, Figure 2 shows a comparison of the simulated annealing

results with those of the pairwise interchange.  In each trial both methods are

initialized with the same random assembly sequence and the results of ten trials are

plotted.  Both methods result in final assembly sequences which are orders of

magnitude better than the initial random sequence.  However, the simulated

annealing method consistently results in an excellent solution, and the pairwise

interchange usually converges to an inferior solution.

Suggestions from aerospace engineers for the antenna assembly sequence

problem led directly to a good problem formulation and to a workable combinatorial

optimization scheme.  Applied mathematicians suggested an improved optimization

scheme.  The next two case studies suggest that formulating the correct optimization

problem generally requires more interaction between mathematicians and engineers.

Damper Placement Problem (DPP)

One aspect of the NASA Controls-Structures Interaction (CSI) project was a set

of laboratory experiments investigating the control of space structures.  The Phase 1



CSI Evolutionary Model (CEM) was a large, flexible structure assembled from truss

elements and antenna support members. (See fig. 3.)  The CEM was designed to

simulate some characteristics of a large earth-observation platform.  The CEM was

suspended by cables and was dynamically tested in the NASA Langley Space

Structures laboratory.  After the dynamic characteristics of the original model were

measured, numerous active control concepts were applied and tested.

In one active control concept (ref. 14), 8 of the 1507 truss elements were

removed and replaced by active struts.  An active strut is a combination of an

actuator and a sensor.  Active struts can sense axial compression or tension and use a

feedback control law to dissipate strain.  Active struts placed in high-strain locations

enhance vibration damping.

The goal of the DPP is to determine optimal locations for 8 active struts so as

to maximize the minimum modal damping ratio over the first 26 characteristic

vibration modes of the structure.  As explained in reference 14, the goal is to improve

damping in all target modes so that any vibration induced in the structure will decay

quickly.  In reference 14, the DPP is expressed as a mixed ILP problem with 1508

design variables and 27 constraints:

maximize
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where νij  is the fraction of axial strain energy in mode i and truss element j;  β is a

real-valued design variable that is proportional to the minimum modal damping

ratio; and x is a vector of binary design variables such that xj = 1 if truss element j is to

be replaced.  The optional vector of weighting factors w can be used if the control of

certain modes is particularly important.

For this second case study, engineering insight led to a useful description of

the physical problem but did not provide an effective mathematical solution method.

One proposed solution method was to select the location j with the maximum value



of  νij  for each mode i.  This method would be reasonable for controlling one or two

modes.  However, if 8 struts must provide damping for 26 modes, then locations that

simultaneously provide damping in several different modes must be sought.

Reference 15 contains information used to describe and formulate the DPP.

The authors suggest the use of the sum of axial strain energy ( ν ij jx∑ ) as a measure

of damping in mode i.  In addition, they suggest that the weights should be

proportional to the percent of modal damping in mode i (i.e.,  wi ij
j

∝ ∑ν ).  This

insight is important because many of the first 26 modes in the CEM involve motion of

suspension cables and deformation of the antenna support elements.  The sum of

modal strain energy due to tension or compression of the truss elements is tiny for

such modes.  Modes that cause little or no strain in the truss elements cannot be

controlled by placing active struts in truss locations.  This phenomenon suggests that

wi = 0 if the modal strain energy is small (e.g., less than 30 percent) and wi=1

otherwise.

Reference 15 provides relevant information in regard to the physics of the DPP

but does not provide efficient solution techniques.  Instead of stating the problem as

in equation (4), the authors use simulated annealing to solve the following

unconstrained nonlinear programming problem:
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where ζ i is a target value of damping in mode i.

Equation (4) is preferred over equation (5) for three practical reasons.  First,

equation (5) will not necessarily provide damping in each controllable mode.  Second,

no straightforward method exists for adding topological constraints to equation (5).

Third, the effort required to solve equation (5) by simulated annealing increases with

the size of the search domain:

size =
N

M N M

!

! !−( )[ ] (6)



where N = 1507 is the number of possible locations and M = 8 is the number of active

struts.  The number of combinations of 1507 locations taken 8 at a time is

approximately 1020; however the size increases dramatically if M increases.

Thus, the DPP is a case in which mathematical expertise is beneficial to

formulating the optimization problem.  For example, reference 14 discusses the

solution of equation (4) as a mixed ILP problem.  The branch and bound algorithm

using linear programming relaxations is demonstrated.  Topological constraints (e.g.,

a restriction on the selection of adjacent locations) are quite easy to add.

Furthermore, the efficiency of the branch and bound algorithm is sensitive to the

number of modes and the number of possible locations (i.e., the dimension of the ν

matrix) but not to the number of active struts.

The solution to the DPP using branch and bound algorithm surprised both the

engineers and the mathematicians.  Figure 4 illustrates one solution to equation (4)

for selecting locations of eight active struts.  This solution was surprising from an

engineering standpoint because two locations were selected on the suspension arms

near the place where the cables were attached to the structure.  Because these arms

were designed to be rigid supports for the flexible truss structure, they were

considered unlikely locations for active struts.  However, further analysis revealed

that the ν values for these locations were quite large in several modes.  These large

values of predicted axial strain energy were partially attributable to a modeling error

and led to an improved finite element model for the CEM and a new set of optimal

locations.  However, the large values were also due to the basic design of the CEM.

The next version of the CEM (i.e., Phase 2) had more rigid support arms.  Thus,

engineering insights gained from solving the mathematical DPP were not only

instrumental in finding the best locations for active struts on the Phase 1 CEM but

also influenced the design of the Phase 2 CEM.

On the other hand, the experimental results provided important insight to the

mathematicians.  When active struts were tested in the predicted “optimal” locations

they provided little vibration damping for several modes.  It was concluded that the

method of finding locations using equation (4) has two weaknesses.  First, the



assumption is made that the structural finite element model is a perfect

representation for the CEM.  A second assumption asserts that the active struts are

identical (i.e., they have the same mass and stiffness properties) to the truss elements

they replace.  Neither assumption is justified.

An improved version of the DPP would include some uncertainty in

specifying the structural finite element model.  However, this uncertainty creates

mathematical difficulties.   For example, if the active struts are significantly different

from the truss elements that they replace, then each change in the solution vector x

requires a new structural model, a new set of characteristic modes, and a new set of ν

values.  If the number of modes and the values of ν are functions of the design

variables x then the branch and bound solution to equation (4) becomes impossible

and a simulated annealing approach is more appropriate.

The DPP illustrates the need for engineering and mathematical input and the

mutual benefits that can be gained in the optimization of engineering systems.

However, important questions are raised in regard to the effect of both modeling

errors and uncertainty on the optimization process.

Active Structural Acoustic Control (ASAC)

Assume that an aircraft fuselage is represented as a cylinder with rigid end

caps (fig. 5) and that a propeller is represented as a point monopole with a frequency

equal to some multiple of the blade passage frequency.  Piezoelectric (PZT) actuators

bonded to the fuselage skin are represented as line force distributions in the x and θ

directions.  Using this simplified model, the point monopole produces predictable

pressure waves that are exterior to the cylinder.  These periodic pressure changes

cause predictable structural vibrations in the cylinder wall and predictable noise

levels in the interior space.  The interior noise level at any discrete microphone

location can be dramatically reduced by using the PZT actuators to modify the

vibration of the cylinder.  For a given set of microphones and a given set of actuator

locations, the control forces that minimize the L2 norm of the noise are known.



However, methods for choosing the optimal locations for the microphones and the

optimal locations for the actuators have not been considered.

The use of active structural acoustic control in cylindrical fuselage structures is

explained in reference 16 and verified by numerous experiments (e.g., refs. 16-18).

The results in reference 16 demonstrate that the amount of noise control depends

both on the geometry of the source plus the cylinder system and on the locations of

discrete control and measuring points.  The force limitations of the PZT actuators

must be considered in planning the control strategy.  In addition, effective noise

control strategies can either reduce the vibration of the cylinder or can increase the

vibration of the cylinder, which shifts the energy to shell modes that do not couple

efficiently with acoustic modes.  This insight is important because aircraft

manufacturers may reject a noise control method that increases vibration and in turn

increases fatigue of the airframe.

In accordance with the notation given in reference 17, the ASAC optimization

problem is to minimize the sum of squared pressures at a discrete set of interior

microphones:

E m m
m

Np

=
=

∑ Λ Λ*

1

(7)

where Np is the number of microphones and * indicates the complex conjugate.  The

response at microphone m is given as:

Λ m mk k m
k

Nc

H c p= +
=

∑
1
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where pm is the response with no active control and Hmk is a complex-valued transfer

matrix that represents the pressure at microphone m due to a unit control force (|ck|

= 1) at the PZT actuator k. The values in the transfer matrix can be collected

experimentally (ref. 17) or they can be simulated (ref. 16).

The cost function can be written as in equation (7) or expressed on a decibel

scale which compares the interior pressure norm with and without ASAC:
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Thus, a negative level signifies a decrease in noise due to the action of PZT actuators.

For a fixed set of Nc  actuators, the forces ck which minimize either equation (7)

or equation (9) can be determined by solving a complex least-squares problem (ref.

16).  Unfortunately, the solution vector may contain values of ck that exceed the

maximum allowable control force.  Also, the solution vector may decrease the interior

noise level and increase the shell vibration level. (Note that an equation similar to

equation (9) exists that compares the vibration norm with and without ASAC.  A

positive vibration level signifies an increase in shell vibration due to the action of PZT

actuators.)

In the ASAC case, engineering input complicated the optimization process.

The engineering approach assumed that the forces ck  were variable but that the

locations were fixed.  Several attempts were made to use multiobjective optimization

to trade off noise reduction and vibration reduction while imposing force constraints.

These attempts met with limited success (ref. 17).  The weakness of this method is

that it is a multiobjective formulation and, thus is highly sensitive to the weights

placed on each objective.

An alternate way to pose the problem is to make the control forces dependent

variables and choose the number and the locations of the actuators.  Given a large

number Nc of possible locations, the alternate procedure uses tabu search or

simulated annealing to converge to the best subset of these locations.  As each

proposed subset is considered, the vector of control forces that minimizes E (eq. (7)) is

calculated and the corresponding noise level (eq. (9)) is used to determine the value

of the proposed move.

Choosing actuator locations to minimize interior noise proves to be very

effective.  For varying numbers of possible locations, subset sizes, source frequencies

and sets of interior microphones, the same trends are observed.  Namely, the subset

of actuators that reduces interior noise also reduces cylinder vibration.  Figure 6



shows typical results.  In the figure, noise and vibration levels are plotted versus the

tabu search iteration number.  The 16 best locations are chosen from a set of 102

possible locations.  Notice that the initial set of 16 actuators reduces the noise by 13

dB but increases the cylinder vibration by 4 dB.  However, after several iterations,

both noise and vibration levels are reduced dramatically.  By adjusting the number of

actuators up or down from 16, the noise-reduction goals can be satisfied without an

increase in vibration and without exceeding force capacity of the PZT actuators.

The best locations for PZT actuators are not intuitively obvious.  For example,

figure 7 shows the grid of 102 possible locations distributed in 6 rings of 17 locations.

Each actuator location is specified by the (x, θ, r=a) position of its center.  (Recall fig.

5.)  The acoustic monopole is located at (x=L/2, θ=0, r=1.2a) where L  is the cylinder

length and a is the cylinder radius.  (The dimensions of the cylinder and the

frequency of the source are chosen to simulate typical blade passage frequencies on

commuter aircraft.)  The shaded rectangles indicate the 16 best actuator locations.

Figure 7(a) shows the best locations for controlling interior noise due to an acoustic

monopole with a frequency of 200 Hz.  Figure 7(b) indicates the change in the best

locations for an acoustic monopole with a frequency of 275 Hz.  Notice the symmetric

pattern in figure 7(a) which corresponds to a case in which the acoustic monopole

excites one dominant interior cavity mode.  Notice the greater complexity of the

pattern in figure 7(b).  Here, several cavity modes of similar importance are excited

by the 275 Hz. monopole.

The results in figures 6 and 7 are preliminary and are based on simulated

transfer matrices.  However, they indicate the importance of actuator location in

active structural acoustic control.  Experimental tests of the actuator placement

procedure are planned.  In these tests, the transfer matrix will be constructed using

measured data and the optimal locations will be verified experimentally.

Concluding Remarks



This paper details the complicated process by which engineering design

optimization problems are formulated and solved.  Occasionally, as with the antenna

assembly-sequence optimization, an engineering description of a problem leads

directly to a convenient solution method.  More often, with engineering input alone, a

multiobjective problem is described for which neither the important design variables

nor the appropriate weighting of objectives are obvious.  In addition, the design

optimization problem is often simulated by a computer code that inadequately

models the physical behavior of the system.  These shortcomings lead to elegant

mathematical solutions but meaningless optimization results.

This paper illustrates the benefits of a synergistic relationship between

engineering and mathematical experts.  Mathematical expertise can be used to pose a

design optimization problem in a less ambiguous manner.  Often, mathematical

experiments reveal useful trends that were previously unsuspected or uncover

weaknesses and coding errors in the analysis codes.  The reverse is also true;

unexpected optimization results and experimental results can be used to improve

mathematical models and to revise an optimization problem.

NASA Langley Research Center

Hampton, VA  23681-0001

October 20, 1995
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Figures

Figure 1. Conceptual design of a large space antenna.
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Figure 2.  Comparison of solutions found by simulated annealing and pairwise
interchange heuristics.
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Figure 3.  CSI evolutionary model (CEM).

Figure 4.  Optimal locations for eight active struts on CEM.
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Figure 5.  Schematic of cylinder and piezoelectric actuators.
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Figure 6.  Typical performance of tabu search, which shows simultaneous reduction

of noise and vibration.
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(a)  Frequency = 200 Hz.

Figure 7.  Optimal locations for 16 piezoelectric (PZT) actuators on cylinder.
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(b)  Frequency = 275 Hz.

Figure 7.  Concluded.


